

SEMPERVIRAMIDINE—A NEW STEROIDAL ALKALOID FROM *BUXUS SEMPERVIRENS*

ATTA-UR-RAHMAN,* DILDAR AHMED, M. IQBAL CHOUDHARY, BILGE SENER† and SONGUL TURKOZ†

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-32/Pakistan; †Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey

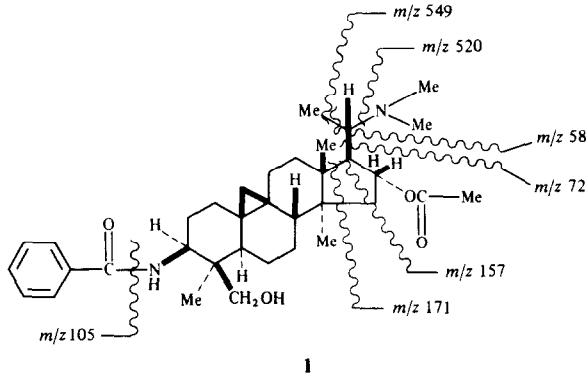
(Received 30 September 1987)

Key Word Index—*Buxus sempervirens*; Buxaceae; steroid alkaloids; (+)-semperviramidine; (+)-16 α -acetoxybuxabenzamidienine.

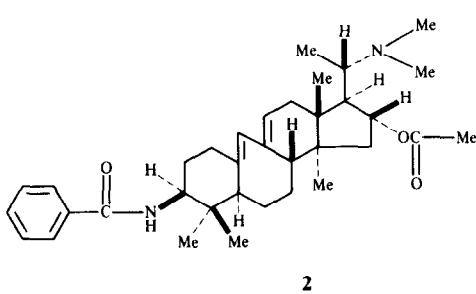
Abstract—From leaves of *B. sempervirens* a new steroid alkaloid (+)-semperviramidine has been isolated and structurally elucidated as (20S)-16 α -acetoxy-3 β -benzoylamino-20-dimethylamino-4,4,14-trimethyl-9 β ,19-cyclo-5 α -pregnane (1) by spectroscopic methods. In addition, the known alkaloid (+)-16 α -acetoxybuxabenzamidienine (2) was isolated from this plant for the first time.

INTRODUCTION

Buxus sempervirens L. (Buxaceae) is a shrub widely distributed in Eurasia and North America, which is abundantly found in Turkey. Water extracts of this plant have found extensive use in the indigenous system of medicine [1]. Continuing our investigations on the leaves of *B. sempervirens*, we report here the isolation and structure determination of a new steroid alkaloid, (+)-semperviramidine (1). Its structure has been elucidated through extensive spectroscopic studies. In addition to this, the already known steroid alkaloid (+)-16 α -acetoxybuxabenzamidienine (2) [2] has also been isolated.


RESULTS AND DISCUSSION

The crude alkaloids were isolated from the concentrated ethanolic extracts of the leaves of *B. sempervirens* by extraction at different pH values. The fraction obtained at pH 3.5 was subjected to column chromatography on silica gel. Further purification by preparative TLC resulted in the isolation of compounds 1 and 2.


(+)-Semperviramidine (1), $C_{35}H_{52}N_2O_4$, showed UV absorption maxima at 225 nm, characteristic of a secondary benzamidic chromophore [3, 4]. The IR spectrum displayed absorptions at 3350 (O-H), 1721 (ester carbonyl), 1657 (amide carbonyl) and 1598 ($C=C$) cm^{-1} [4]. The 1H NMR spectrum of 1 ($CDCl_3$, 400 MHz) showed two AB doublets which resonated at δ 0.38 and 0.55 ($J_{19\alpha, 19\beta} = 3.7$ Hz) and were assigned to the 19α - and β -cyclopropyl protons. Three 3-H singlets at δ 0.80, 0.98, 1.15 were assigned to the three tertiary methyl groups. A doublet resonated at δ 0.93 ($J_{21, 20} = 6.7$ Hz) due to the 20-methyl group (or 21-H₃). A three-proton singlet at δ 2.09 was due to the acetate methyl group while the N(Me)₂ group appeared as a 6-H broad singlet at δ 2.23. Two AB doublets centred at δ 3.82 and 4.00 ($J_{31\alpha, 31\beta} = \sim 9.0$ Hz) were due to the two methylenic protons of the 4 β -hydroxymethyl groups. A multiplet centred at δ 4.38 was assigned to the 16 β proton, geminal to the

acetoxy group. The 3 α proton appeared as a multiplet at δ 4.18, while the amidic -NH proton appeared as a clean doublet at δ 5.85 ($J_{3\alpha, NH} = 9.8$ Hz). Two multiplets integrating for 3H and 2H appeared at δ 7.43 and 7.68 were due to 3'/4'/5' and 2'/6' aromatic protons, respectively.

In accord with all the other related *Buxus* alkaloids, the 3-aminated substituent has been placed in a *beta* configuration. Furthermore, whenever biogenetic oxidation of one of the two 4-methyl substituents of ring A occurs, it is always the 4 β -methyl (C-31) group that is effected [3]. The 1H NMR spectrum of 1 was also rerun

1

2

in pyridine-*d*₅ [6]. It is known that under these conditions the protons adjacent to the hydroxy group will suffer pronounced paramagnetic shifts. This was found to occur for the 31-methylenic protons (from δ 3.82 and 4.00 and δ 4.00 and 4.35 respectively) and allowed the determination of the geminal coupling constant ($J_{31\alpha, 31\beta} = 12.0$ Hz). Similarly, the 30-methyl protons were shifted from δ 0.98 to 1.22, which served to establish their chemical shift (since the 18 and 32 methyls are not expected to undergo the marked downfield shift in *d*₅-pyridine). These paramagnetic shifts argue convincingly in favour of the proposed 31 position for the hydroxyl function [2, 5].

The high resolution mass spectrum of **1** showed the molecular ion at *m/z* 564.3915 corresponding to the molecular formula C₃₅H₅₂N₂O₄, indicating the presence of eleven double bond equivalents in the molecule. A considerably large peak at *m/z* 549.36753 was due to the loss of the methyl group from molecular ion while *m/z* 520.3455 represented the loss of N(Me)₂ group. A large peak at *m/z* 105.0339 corresponded to the benzoyl cation. Compound **1** showed a base peak at *m/z* 72.0812 which arose by the cleavage of the ring D nitrogen-containing side chain [5]. Peaks at *m/z* 171.1167 and 157.1031 arose by the cleavage of ring D and established the 16-position of the acetate group. The overall mass fragmentation pattern was very close to (+)-*N*-benzoyl-16 α -acetoxybuxabenzamidine-F [7]. In the light of this data structure **1** was assigned to the new alkaloid.

Our second compound was identified as the known 16 α -acetoxybuxabenzamidine (**2**) by TLC and spectroscopic comparison with an authentic sample. This compound has not been found previously in *B. sempervirrens*, but had been isolated from the leaves of *B. pilosula* [2].

EXPERIMENTAL

The ¹H NMR spectra were recorded at 400 MHz. TLC experiments were performed on silica gel (GF-254) precoated plates (E. Merck).

The plant material was collected from the Beynam forest, Ankara/Turkey, in Sept. 1986, and was identified by Prof. Bilge Sener (Pharmacognosy Department, Gazi University, Ankara).

The EtOH extract of air-dried leaves was evapd to a gum. The alkaloids (50 g) were obtained by extraction into 10% HOAc. Partial separation of the alkaloids was carried out by extraction into CHCl₃ at different pH values. The fraction obtained at pH 3.5 (20 g) was loaded on a silica gel column (300 g). Elution was carried out first with CHCl₃ and then with CHCl₃-MeOH. Several fractions were obtained. Fraction A, CHCl₃-MeOH (9:1), 2.5 g; Fraction B, CHCl₃-MeOH (4:1), 2 g.

(+)-*Semperviramide* (**1**). Fraction A was subjected to repeated prep. TLC using the system acetone-petrol

(40-60 °)-NHEt₂ (5:15:1) to supply amorphous **1** (6 mg); $[\alpha]_D^{20} = +33^\circ$ (CHCl₃); UV λ_{max} (MeOH) nm: 225 nm; IR ν_{max} (CHCl₃) cm⁻¹: 3350 (O-H), 1721 (amide carbonyl), 1657 (ester carbonyl), 1598 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ : 0.38 (1H, *d*, $J_{19\alpha, 19\beta} = 3.7$ Hz, H-19 α), 0.55 (1H, *d*, $J_{19\beta, 19\alpha} = 3.7$ Hz, H-19 β), 0.80 (3H, *s*, Me), 0.93 (3H, *d*, $J_{21, 20} = 6.7$ Hz, Me-21), 0.98

O

||

(3H, *s*, H₃-30), 1.15 (3H, *s*, Me), 2.09 (3H, *s*, C-Me), 2.23 [6H, *s*, N(Me)₂], 3.82 (1H, *d*, $J_{31\alpha, 31\beta} = 12.1$ Hz, H-31 α), 4.00 (1H, *d*, $J_{31\beta, 31\alpha} = 12.1$ Hz, H-31 β), 4.18 (1H, *m*, H-3), 4.38 (1H, *m*, H-16), 5.85 (1H, *d*, $J_{\text{NH}, 3} = 9.8$ Hz, -NH), 7.43-7.68 (5H, *m*, ArH); MS *m/z* (int. %): 564.3915 (C₃₅H₅₂N₂O₄, calcd. 564.3926, 3), 549.3675 (C₃₄H₄₉N₂O₄, calcd. 549.3692, (1) 520.3455 (C₃₃H₄₆NO₄, calcd. 520.3426, (2) 171.1167 (C₉H₁₇NO₂, calcd. 171.1259, (4) 157.1013 (C₈H₁₅NO₂, calcd. 157.1102, (5), 105.0703 (C₇H₅O, calcd. 105.0340, (10) 73 (2), 72.0812 (C₄H₁₀N, calcd. 72.0813, 100), 58.0650 (C₃H₈N, calcd. 58.0656, 10).

16 α -*Acetoxybuxabenzamidine* (**2**). Fraction B was subjected to prep. TLC (silica gel) in solvent system, acetone: petrol (40-60 °): NHEt₂ (5:10:1) to afford amorphous **2** (10 mg); $[\alpha]_D^{20} = +6^\circ$ (CHCl₃); UV λ_{max} (MeOH) nm: 225, 230sh, 237, 245, 254sh; IR ν_{max} (CHCl₃) cm⁻¹: 3400 (NH), 1718 (ester carbonyl), 1652 (amide carbonyl), 1600 (C=C); ¹H NMR (CDCl₃, 400 MHz): δ 0.70 (3H, *s*, Me), 0.85 (3H, *s*, Me), 0.86 (3H, *s*, Me),

O

||

0.86 (3H, *d*, $J_{21, 20} = 6.8$ Hz, H₃-21), 1.80 (3H, *s*, C-Me), 2.30 [6H, *s*, N(Me)₂], 2.60 (1H, *m*, H-20), 4.37 (1H, *m*, H-3), 5.06 (1H, *m*, H-16), 5.53 (1H, *br s*, H-11), 5.90 (1H, *m*, H-19), 6.36 (1H, *d*, $J_{\text{NH}, 3} = 8.5$ Hz, NH), 7.37-7.72 (5H, *m*, ArH); MS *m/z* (rel. int.): 546.3729 (C₃₅H₅₀N₂O₃, calcd. 546.3720, 3), 531 (4), 503 (20), 171 (3), 157 (8), 148 (40), 72 (100), 71 (10), 58 (3).

Acknowledgement—The authors wish to express their thanks to Glaxo Laboratories (Pak) Ltd for financial support (for D.A.).

REFERENCES

1. Cordell, G. A. (1981) *Introduction to Alkaloids*, p. 907. Wiley-Interscience, New York.
2. Choudhary, M. I., Atta-ur-Rahman, Freyer, A. J. and Shamma, M. (1986) *Tetrahedron* **42**, 5747.
3. Kupchan, S. M., Kennedy, R. M., Schleigh, W. R. and Ohta, G. (1967) *Tetrahedron* **23**, 4563.
4. Choudhary, M. I., Atta-ur-Rahman, Freyer, A. J. and Shamma, M. (1987) *J. Nat. Prod.* **50**, 84.
5. Waller, G. R. and Dermer, O. C. (1980) *Biochemical Application of Mass Spectrometry*, p. 783. Wiley-Interscience, New York.
6. Demarco, P. V., Farks, E., Doddrell, D., Mylar, B. L. and Wenkert, E. (1968) *J. Am. Chem. Soc.* **90**, 5480.
7. Atta-ur-Rahman, Choudhary, M. I., and Nisa, M. (1986) *Planta Med.* **75**.